- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Yuzhi (2)
-
Gold, Avram (2)
-
Xu, Rongshuang (2)
-
Zhang, Zhenfa (2)
-
Ault, Andrew P. (1)
-
Ault, Andrew_P (1)
-
Chan, Man Nin (1)
-
Chan, Man_Nin (1)
-
Cui, Tianqu (1)
-
Lambe, Andrew T. (1)
-
Lei, Ziying (1)
-
Ng, Sze_In_Madeleine (1)
-
Olson, Nicole E. (1)
-
Surratt, Jason D. (1)
-
Surratt, Jason_D (1)
-
Szalkowski, Tessa (1)
-
Turpin, Barbara J. (1)
-
Turpin, Barbara_J (1)
-
Vizuete, William (1)
-
Zhang, Yue (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Methyltetrol sulfates are unique tracers for secondary organic aerosols (SOA) formed from acid-driven multiphase chemistry of isoprene-derived epoxydiols. 2-Methyltetrol sulfate diastereomers (2-MTSs) are the dominant isomers and single most-abundant SOA tracers in atmospheric fine particulate matter (PM2.5), but their atmospheric sinks remain unknown. We investigated the oxidative aging of authentic 2-MTS aerosols by gas-phase hydroxyl radicals (•OH) at a relative humidity of 61 ± 1%. The effective rate constant for this heterogeneous reaction was determined as 4.9 ± 0.6 × 10–13 cm3 molecules–1 s–1, corresponding to an atmospheric lifetime of 16 ± 2 days (assuming an •OH concentration of 1.5 × 106 molecules cm–3). Chemical changes to 2-MTSs were monitored by hydrophilic interaction liquid chromatography interfaced to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (HILIC/ESI-HR-QTOFMS). Plausible reaction mechanisms are proposed for previously unknown OSs detected in atmospheric PM2.5 at mass-to-charge ratios (m/z) of 139 (C2H3O5S–), 155 (C2H3O6S–), 169 (C3H5O6S–), 171 (C3H7O6S–), 185 (C3H5O7S–), 199 (C4H7O7S–), 211 (C5H7O7S–), 213 (C5H9O7S–), 227 (C5H7O8S–), 229 (C5H9O8S–), and 231 (C5H11O8S–). Heterogeneous •OH oxidation of 2-MTSs redistributes the particulate sulfur speciation into more oxygenated/functionalized OSs, likely modifying the aerosol physicochemical properties of SOA containing 2-MTSs.more » « less
-
Xu, Rongshuang; Chen, Yuzhi; Ng, Sze_In_Madeleine; Zhang, Zhenfa; Gold, Avram; Turpin, Barbara_J; Ault, Andrew_P; Surratt, Jason_D; Chan, Man_Nin (, Environmental Science & Technology Letters)
An official website of the United States government
